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Abstract. Operating everyday objects, such as rotating the lid of a jar, often
requires a complex sequence of contact interactions that are challenging for robot
manipulators. We present a method where object-centric motion trajectories are
defined by poses and wrenches, enabling the agent to learn contact interactions
efficiently in differentiable simulation environments. Our approach, DEXMOTS,
integrates task-specific information with a differentiable simulator to provide
policy gradients which backpropagate through an environment dynamics model
to efficiently learn a goal-conditioned controller. Concretely, the trajectory of
object pose and wrench requirements gives the necessary information to handle
varying friction or damping forces, such as in the case of a tightening screw cap,
or when pushing against a spring-loaded lever. To highlight the benefits of our
approach, we developed a set of dexterous manipulation scenarios in which a
robot has to control operable objects with joints of varying stiffnesses, shapes, and
functional task requirements. Then, we demonstrate how object-centric motion
trajectories can be leveraged to learn dexterous motion policies for different hand
morphologies. We empirically validate our method against a set of model-based
and model-free RL baselines and show that DEXMOTS achieves up to 40% higher
success rates on a suite of realistic contact-rich manipulation tasks. For further
visualizations refer to our website: dexmots.github.io.

1 Introduction
Dexterous manipulation is a challenging domain for learning-based continuous

control algorithms, with recent learning-based methods tackling grasping and in-hand
manipulation tasks with dexterous hands [8, 25, 32, 37]. For household and personal
robotics applications, most objects are designed specifically for human hands, requir-
ing robots with dexterous capabilities to manipulate them. Tasks like spraying surface
cleaner, opening a jar, or dispensing soap require dexterous manipulation to operate
specific locations on the object. However, the interaction between grasping and in-hand
manipulation is complex, especially in instances of tool use where an object-specific
grasp is needed to articulate the object. We propose DEXMOTS to learn policies that
can interact with operable objects, which have to be articulated carefully by deliberate
contact interactions by dexterous hands. DEXMOTS allows learning policies that follow
a desired object reference trajectory in pose-wrench space. Additionally, we introduce

https://dexmots.github.io
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Fig. 1: Tasks from different object classes from our task set: the spray bottle and screw top. The
sequences of target wrenches applied on the object’s degree of freedom are represented with ω1:t.
The left half visualizes a intra-object wrench reference trajectory ω for actuating multiple spray
bottle levers. On the right, a planar rotation is used to apply either the counter-clockwise ω or
clockwise torques ω to the object.

a contact-rich simulation benchmark with a suite of challenging dexterous manipula-
tion tasks. WarpManip is distinct from prior benchmarks in its focus on learning to
manipulate articulated tools from the PartNet mobility dataset [34]. On a variety of task-
oriented grasping and manipulation scenarios, we compare our method to state-of-the-art
baselines in model-based, model-free, and differentiable simulation-based reinforcement
learning methods, as well as a simple MPC baseline.

We evaluate our suite of tasks from DEXMOTS using standard SOTA RL methods
from rl_games [23], and frame each task as a goal-conditioned reinforcement learning
problem. Our contributions are: 1) developing a benchmark for dexterous manipulation
tasks with GPU-accelerated differentiable simulation, 2) designing a suite of object-
centric tasks studying rigid body and operable objects, and 3) creating an object-centric
goal-conditioned method for dexterously manipulating operable objects.

2 Related Work
Current approaches to dexterous manipulation have mainly studied reposing tasks [3,

7], which multiple benchmarks [2, 14, 24] have implemented to evaluate ground truth
and vision-based reinforcement learning methods. Our work sets out to highlight the
challenge of task-oriented grasping and manipulation of objects involving two or more
connected articulating bodies, as found in many objects that humans interact with by
leveraging innate dexterity.

Dexterous Manipulation Task Benchmarks – Existing benchmarks with environments
for dexterity [2, 3, 8, 25, 37] primarily focus on manipulating rigid objects, such as
cubes or hard toys. However, objects like scissors or staplers require task-specific grasps
and dexterous interactions in order to be used, and involve controlling a specific joint on
the object. Recently, labeled interaction datasets collected by human demonstrators [9,
10] study how humans employ complex dexterous control in videos of interaction
for operable objects with internal joints. Our work shows that even state-of-the-art
reinforcement learning methods can struggle when adapting to new object instances or
changes in the object’s dynamics due to object instance-specific simulation parameters.
These baselines also require extensive compute time, physics randomization, and a large
number of samples for training. Furthermore, they do not generalize well to a single
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Benchmark Robot hand types
(DoF)

Sensing Simulator Speed Objects

TCDM [8] 3/4/5-fingered
grippers

GT-state, Proprio-
ception

Mujoco 1, 500 fps 30 objects

Maniskill2 [14] Two-fingered grip-
per

Proprioception,
RGBD

SAPIEN (Warp-
Sim)

2, 500 fps 2000+ objects

IG-Envs [24] Allegro Hand (16),
Shadow Hand (24)

Visual and Force
Sensors

IsaacGym 22, 000 fps Block, pen, and
egg

DexArt [5] XArm6 (6), Alle-
gro Hand (16)

GT-state, RGBD SAPIEN 2, 500 fps 82 articulated ob-
jects

Ours Allegro Hand (16),
Claw (4)

GT-state, Proprio-
ception, RGB

Warp 400, 000 fps
(proprioception),
9, 000 fps (RGB)

14 (operable) ob-
jects

Table 1: Current benchmarking methods for dexterous manipulation, their relative speeds for
simulating physics, and support for dexterous manipulation and articulating objects.

policy architecture that can handle different object types. We draw inspiration from task
variations presented in previous work [38] to highlight these challenges, and show that
our method for goal representation enables better learning in these scenarios.

Task Representations for Learning Dexterous Manipulation – Many recent approaches
to dynamic dexterous manipulation policies or controllers for object manipulation use
deep reinforcement learning to effectively handle high degree-of-freedom control with
hard-to-specify cost terms, and optionally high-dimensional input. A common task is
to re-orient an object, such as a cube or a toy, from an arbitrary initial pose to some
desired final pose [2, 3, 7, 29]. However, in contrast to our work, these works focus on
reposing tasks where an object does not need to fully track a desired object motion but
only reach the final pose. Our method first defines these motion trajectories explicitly in
the joint configuration space of the object, where the pose of the object is considered
as an additional 7-DoF free joint. Then the trained policy has to find a suitable grasp to
produce this desired object motion trajectory. This is similar to prior work in dexterous
functional grasping and manipulation [1, 8], which takes the object pose trajectory into
account, but excludes the object’s articulated joint poses in these trajectories. Recent
work [4] has also shown that RGB videos of bimanual manipulation can be used to model
object motion using a screw axis to learn and finetune imitation learning policies, further
supporting the usefulness of object-centric motions as a representation for learning.

In [6, 10, 19, 25], feasible grasps to achieve a specific kind of object motion are
found using labeled demonstrations that produce grasp heatmaps on different objects
that impose a human prior over contact region and hand-pose (via reward functions
and affordance maps). In contrast, our work discovers such grasps by choosing a start-
ing hand pose close to the object, and samples feasible grasps with a prior method,
DexGraspNet [33]. Additionally, object motion trajectories are created on the fly when
only provided with a goal pose by performing object trajectory optimization. This we
experimentally show allows the policy to achieve desired poses for each object better by
breaking down the trajectory into waypoints, and use the force profile to determine the
policy’s relative stiffness.

Model-Based Learning and Differentiable Simulation – Next, we describe methods that
use model-based reinforcement learning or differentiable simulation which introduce
a structural prior for several robotic continuous control tasks adjacent to grasping
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and manipulation. In Grasp’D [32], a differentiable simulator similar to ours is used
to explore the space of grasping parameters that yield natural grasps according to a
differentiable simulation-based grasp metric that evaluates grasp stability. Our work does
not consider the same grasping metric since our tasks involve object motion trajectories.
Instead, we use the reward signal from the goal-conditioned control task directly to
implicitly find grasps that can generate a desired wrench on the object and produce
smooth trajectories. Other related works, such as SAM-RL [20] and PODS [28], use a
hybrid model-based reinforcement learning and differentiable simulation-based approach
to learn manipulation tasks. A key distinction of our work is that while we also leverage
a transition model for computing gradients, we use a short horizon to learn a general
reactive policy used for dexterous manipulation skills. In contrast, their approach does
not consider applications of dexterous manipulation, where the tasks a) require higher
degree of freedom control, and b) manipulate an object where sliding friction or revolute
friction with other surfaces may be considered. Lastly, our method, DEXMOTS, extends
the differentiable simulation-based policy learning algorithm Short-Horizon Actor-Critic
(SHAC) [36]. In particular, we propose a goal-conditioned variant that leverages dense
task signals from contact, such as the forces applied on the object, to enable dexterous
manipulation on tasks such as screwing, grasping, and lifting. One limitation of this
approach, however, is that in order to bridge the sim-to-real gap, the simulator must
closely match the real task’s physics for the policy to be transferrable. Independent
works [16] have shown to be capable of learning complex real-world dynamics from
data collected on real hardware, which is then used to fit the simulation hyperparameters
by leveraging differentiable physics.

3 Problem Statement
This work aims to train a policy that tracks object-centric reference trajectories.

We formulate this problem as a goal-conditioned reinforcement learning problem. Let
⟨S,G,A, T , r, γ, ρ⟩ be a Markov Decision Process (MDP) with states st ∈ S, goals
g ∈ G and actions at ∈ A indexed by time t ∈ 0, 1, · · · , T where T is the maximum
episode length. We define the state space as the full ground-truth state vector of the
hand’s pose, joint angles, and velocities, and the object pose and velocity. As described
in Sec. 4, we generate an object-centric reference trajectory consisting of subgoals
gt = {pt, wt} ∈ G, which define the desired object pose p and wrench w at each time
step t. Each object pose pi is defined by a position xo ∈ R3 and orientation oo ∈ SO(3).
A wrench wot = {fot , tot} is defined by the forces and torques applied to the object at
time step t. In summary, the pose goals poi determine the position and orientation of the
object throughout the trajectory, while the wrench goals determine the forces and torques
required to achieve the desired pose of the object. Since this includes the internal joint
torques and forces for articulated objects, the goal-conditioned agent can directly learn
on the links of the object to minimize the wrench and pose tracking error.

4 Object-Centric Task Plans
We consider the manipulation of objects with and without operable parts. Specifically,

objects with operable parts, such as the lid of a bottle or the lever of a spray bottle, require
control of additional degrees of freedom on the object, in addition to the base object
pose. To affect an object’s state in this way, it is important to take actions (or at a higher
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Fig. 2: An overview of our method, which has two distinct phases: 1) object trajectory optimization,
yielding the desired object pose+wrench trajectorym and 2) policy optimization, where the robot
agent’s motion policy is learned with policy gradients from differentiable simulation.

level, grasps) that apply forces to the object to generate a wrench that results in the
desired motion. For instance, tightening a bottle cap requires a variation in the applied
force/torque over time while changing the pose of the cap, as visualized by the different
arrows in Fig. 1. Our hypothesis is that providing the trajectory of wrenches to apply to
an object guides an agent towards certain grasps and contact modes which enable the
application of desired forces on the object, and achieve a desired motion. We explore
this effect in a goal-space ablation study in Sec. 7.

While there are several methods to generate an object’s motion trajectory with
poses and wrenches, we leverage a differentiable simulator and follow a gradient-based
approach to find the trajectory of net wrenches applied to the object to reach a desired
goal pose poT . First, given the object’s initial pose p0, we linearly interpolate the pose
of the object over time to follow a smooth pose reference trajectory p̄1:T . Next, we
simulate a sequence of wrenches ωot ∈ R6 applied to the object initialized at pose p0
to obtain an object pose trajectory p̂1:T . Finally, we minimize the pose tracking error
Lpose =

∑T
t=1∥p̂ot − p̄ot∥ by differentiating back through the differentiable simulator to

compute the gradient ∇wo
t
Lpose, and perform a gradient update to improve the wrench

sequence tracking the desired reference motion.
Our gradient-based approach for producing wrench trajectories can also be computed

for a pose-only trajectory that is generated from a human demonstration, such as those
collected in [8]. Once an initial pose-trajectory motion plan is given for an object, the
net forces and wrenches applied over the trajectory are approximated by taking the finite
differences of the angular and linear velocities. The advantage of doing so is allowing
re-use across different embodiments, since the poses are object-centric and do not require
the hand poses, which we show performs just as well or better than pose-only trajectories
in our experiments (Sec. 7). In summary, the object-centric pose-wrench trajectories
yield a compact yet expressive task space while learning to dexterously manipulate
objects in scenarios involving variable amounts of friction or damping forces, such as
rotating a bottle cap which tightens, or pushing against a spring-loaded lever.

5 Policy Learning with Differentiable Simulators
In this paper, we propose DEXMOTS, an actor-critic learning algorithm that com-

bines policy learning in differentiable simulation with goal-conditioning on object-centric
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goals. As discussed in Section 3, we cast the problem as a Goal-Conditioned MDP where
the goal state contains the object goal pose xgoal and desired wrench trajectory wdes. This
task conditioning captures temporal information about the desired tool-use affordance.
1. Reward Model – First, we define an object-centric task reward, which is computed
based on the difference between current and desired object pose and wrench at each
time-step (time-index omitted for brevity):

ro = λposerpose + λwrenchrwrench (1)

where rpose = exp(−∥po− p̄o∥), rwrench = exp(−∥ωo− ω̄o∥), with object pose po ∈ R6

and wrench ωo ∈ R6, each containing a linear and angular component. As previously
done by [2], we choose exponentiated rewards for object tracking errors to simplify the
normalization of different unit distance scales when computing an object’s displacement
from its desired pose. This also ensures the reward gradients do not approach zero as
the position or orientation goal is close to being reached. For clarity, we vectorize the
object-centric reward as ro = [rpose, rwrench], with the corresponding cost coefficients
written as λo = [λpose, λwrench].

The agent-specific reward ra penalizes the magnitude of the actions at each time-step
and includes an additional reward term to encourage the fingertips to be near the object’s
surface by using their distance to the object. Specifically, we use

ra = λactract + λfrf , (2)

containing the action penalty ract = −∥a∥, and the distance to the object centroid is
rf =

∑Nf

i=1 exp(−∥xfi − xo∥), where xfi is the position of the robot’s fingertip, Nf

is the number of fingers, and xo is the position of the object’s center. We vectorize the
agent-specific reward coefficients as λa. To encourage dexterous grasps that manipulate
the objects more from the distal joints, we apply a weighted λact at each finger with a
higher action penalty applied at the distal joints than at the proximal joints. Since this
will depend on the number of joints, links, and morphology of the robot, this reward
term is agent-dependent. The full combined object and agent reward functions used to
train the policy are then given by summing Eq. 1 and 2:

r = λTo ro + λTa ra. (3)

Given the current state of the object and manipulator, as well as the desired wrench
trajectory, the policy is optimized by an actor-critic method similar to [36] that maximizes
the cumulative returns from Eq. 3 (see Sec. 5.2).

We use additional force and torque reward terms from the object-centric reward
function in Eq. 1 which supplement the task reward for the policy.

From a desired pose-wrench trajectory, the reward landscape for policy learning
becomes better conditioned in order to converge to a grasp that enables the desired
affordance. This is highlighted in Fig. 4, which visualizes the policy gradient objective
landscape near a point of contact for the two-fingered Claw environment when rotating
a fixed valve (see details in Sec. 7). The x and y-axes plot the subspace of joint values
for the left and right distal links, and the level sets indicate local changes in the ex-
pected reward by perturbations to the joint actions. The gradients, shown by the arrows,
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are computed via the differentiable simulation backend, Warp. Under pose-only goal-
conditioning, the reward landscape is flat and sparse, making policy learning difficult.
In contrast, the reward landscape under pose-wrench conditioning favors actions going
toward the four corners of the plot, thus leading to higher rewards (i.e. more rotation).
2. Policy Learning with Object-Centric Goals – After acquiring object-centric trajecto-
ries, the dexterous motion policy πθ is learned to control a hand to articulate the object
according to the desired trajectory, similar to trajectory-conditioned policies in [8, 15].
Since the goal changes over time, the policy must be conditioned on the goals or the
rewards become non-Markovian, since the same state-action tuple (st, at) at time-step i
in the trajectory may return a different reward at time-step j. Our method is therefore a
goal-conditioned actor-critic method, with a target-critic to stabilize the critic learning
objective [12]. To facilitate exploration during the learning process, the policy samples
an action a ∼ N (µθ(st,gt), σθ) ∈ A.

In the goal-conditioned setting, the critic estimates a goal-conditioned value function:

Q̄π(st, gt,at) = Eat∼π

(
T∑
t′=t

γt
′−tr(st, gt,at)

)
, (4)

which calculates the cumulative return from the policy π that is conditioned on gt. This
is done in the finite-horizon case as the object-centric trajectories pt:t+h are considered
solve-able within a fixed-length horizon H .

The critic learns to optimize the following training objective:

Lϕ = E
(s,a,g)∈{τi}

[
∥Qϕ(s, g,a)− Q̃π(s, g,a)∥2

]
, (5)

which approximates the true action-value function from Eq. 4. To approximate the
action-value Q with low variance, we use TD(λ) [31] using an exponentially weighted
average of different k length sub-trajectories sampled from a replay buffer Dπg

,

Q̃(st, gt,at) = (1− λ)

( h−t−1∑
k=1

λk−1Gk
t

)
+ λh−t−1Gh−t

t , (6)

where Gk
t =

(∑k−1
l=0 γlrt+l

)
+ γkQϕ(st+k, gh, at+k) is the k-step return from time t.

In actor-critic methods, the policy πθ is trained in conjunction with the critic op-
timizing Eq. 6 to increase the likelihood of sampling higher value actions. Since the
critic’s parameters can change rapidly during the course of policy learning, we employ
the target critic Qϕ′ with polyak averaged updates [12, 26] for better policy gradients
computed from Eq. 6. When computing the policy gradients via Monte-Carlo rollouts, it
is important to have enough samples (N ) to cover the support of the state distribution
induced by the policy (ρπ). This becomes difficult to compute when the state-space S is
large and the rewards are goal-conditioned. However, this highlights an advantage of
using model-based learning, which computes the gradient from the task reward directly
with respect to the sampled actions to update the policy parameters, and is discussed
further in the following section.
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6 GPU-Parallelized Differentiable Simulation
Differentiable simulators can compute model-based gradients through the transition

function by taking the gradient of the actions and states with respect to the forward
step operator F . However, propagating model-based gradients over a long horizon
poses a challenge where the policy gradient from the actor objective (Eq. 8) over many
time-steps will tend to vanish or explode. Naively using differentiable simulators with
many contacts, as is the case in contact-rich manipulation, exacerbates this challenge, as
discussed in prior literature [11, 18, 39].

Physics Simulator – In this section, we provide a short overview of the physics used in
our differentiable simulator, for which further details can be found in [22]. We develop a
novel differentiable simulator in this work for controlling objects with articulated joints
with multi-fingered hands. The forward transition kernel operator F(s, a) = s′ computes
the next state according to the dynamical system

M(x)ẍ = JT (x)f(x, ẋ) + c(x, ẋ) + τ (x, ẋ, ẍ) (7)

The physics simulator used integrates Newton’s equations of motion in terms of the body
positions, x = {x1, ..., xn}, where external forces on them are represented by f , with c
giving Coriolis terms, and τ combining terms for joint-space actuation for both the object
and hand. Our physics simulator computes this forward step to update the positions of
the rigid bodies in the environment subject to a vector of constraint functions imposed by
contact C = [C1(x), . . . , Cm(x)]. This is solved via a quasi-Newton method to yield
the positional update ∆x = M−1∇C(xi)

T∆λi, where λi is the vector of the Lagrange
multipliers for the constraint Ci. The contact points between rigid shapes and meshes
are yielded from a collision detection step and serve as contact constraints (C) in these
positional updates.

We implement our simulator in Warp, a software library for writing simulation
kernels in Python which is GPU accelerated, as well as the gradient of the kernels via
automatic differentiation [21]. Our simulator incorporates SDF-based collision handling
when computing rigid contacts with meshes, which preserves dense area contacts with-
out compromising simulation speed. Additionally, we choose extended position-based
dynamics (XPBD) [22] to simulate the articulated rigid-body mechanisms and contact
dynamics in reduced coordinates. XPBD is a flexible simulation approach that han-
dles contacts and joints between rigid bodies via constraints and accurately resolves
complex multi-contact interactions involving linear, rolling, and torsional friction [22].
Analogously to the soft contact formulation in [32, 35], we introduce smoothness to the
rigid contact resolution by adding relaxation to the contact constraints. Such relaxation
allows for slight constraint violations which softens the otherwise discrete contact re-
sponse when collisions between rigid bodies occur. For our benchmark tasks, the loss
landscape is more difficult to optimize due to the high number of potential contacts
between the hand and the object. In the simulated Allegro hand environments, we adopt
a relaxation of the rigid contact constraints applied when using implicit position-based
dynamics integration [22]. In the case of our simulated manipulation environments, this
allows a smoother continuous gradient through points of contact between the multifinger
end-effector and the object.
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Automatic Differentiation through Forward Simulation – Through the construction of
the forward step kernel F which caches the computed matrices used to generate s′ (as
given in Eq. 7), given a differentiable loss function L, we can compute the following
backwards gradient adjoint terms:
– the action gradient given by: ∂L∂a = ∂L

∂s′
∂F
∂a

– the previous state gradient, given by: ∂L∂s = ∂L
∂s′

∂F
∂s

These terms are concatenated using the chain rule to compute gradients through the
entire trajectory.

Gradient Computation with Truncated Horizon – In practice, caching the intermediate
forward kernels produces a memory bottleneck, slowing down training and resulting in
noisy gradient signals, especially as the length of the horizon grows. We resolve this issue
by breaking the full episode length T into shorter sub-trajectories of H ≪ T time-steps,
applying actor-critic updates at the end of each sub-trajectory. While in prior work [36]
horizon lengths were fixed to 16 and 32, this does not work well for contact-rich tasks
due to a) the increased noise in computing gradients for our contact-rich tasks, and b) the
increased amount of GPU memory used due to the large number of mesh-to-mesh contact
constraints. We address this with a shorter H that can be treated as a parameter tuned by
the frequency of stiff contacts, which produce discontinuous gradient signals. Adopting
the Adaptive Horizon Actor-Critic (AHAC) framework [13], the horizon lengths are
adjusted according to a heuristic designed to keep the stiff contact forces within a fixed
constraint threshold C̄. This yields shorter horizons truncating the compute graph which
reduces the overall variance of computed gradients. Returning to Eq. 4, the actor training
objective for the short horizon from time-step t to t+H is defined as:

J(θ) =

H+t−1∑
h=t

γh−tr(sh,ah) + γhVψ(st+H) (8)

Benchmark Tasks(a) Spray Bottle Task (c)Action Space Ablation - Screw (Claw)(b)

Fig. 3: (a) Visualization of the benchmark tasks: Planar rotation with the claw (two-finger) and
Allegro hand, Cube Rotate, Spray Bottle, Scissors, and Stapler. (b) Bar plot showing the relative
performance of our method compared to two other baselines, PPO (model-free RL), and PGDM
(model-based RL), for different choices of action space, the planar rotation task using a pedagogical
Claw (two-fingered). (c) Learning curves comparing DexMOTS (with and without trajectory
conditioning), PGDM, PPO, and SAC success rate on the spray task in the operable object set.
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7 Experiments
Our experiments investigate whether:
1. Differentiable simulation is effective for policy-learning, and it outperforms compara-

ble RL baselines in wall-clock time, sample efficiency, and task success.
2. Object-centric task spaces form a smoother loss landscape for policy learning to opti-

mize, and improve policy robustness to dynamics perturbations in the environment.
3. DEXMOTS, leveraging a smoothed policy learning landscape, can also follow a

manually collected object pose trajectory from the TCDM benchmark [8].

Environment Ours Ours (pose-only) MPC SAC PPO PGDM

Repose Cube 96.0 ± 3.0 85.2 ± 4.3 18.0 ± 3.1 74.8 ± 8.2 89.4 ± 2.9 53.6 ± 6.8

Spray Bottle 89.6 ± 2.9 63.4 ± 8.3 8.4 ± 4.3 47.8 ± 5.8 51.8 ± 8.7 83.8 ± 4.0

Scissors 42.4 ± 5.3 41.6 ± 7.5 5.0 ± 1.9 37.6 ± 5.3 18.4 ± 7.1 39.6 ± 7.2

Stapler 81.6 ± 7.4 63.5 ± 8.4 14.2 ± 4.4 26.8 ± 12.6 27.0 ± 6.3 88.4 ± 13.7
Screw-top (Claw) 92.6 ± 6.4 93.8 ± 2.1 8.6 ± 2.8 17.0 ± 3.7 47.4 ± 3.8 86.2 ± 10.4

Average 80.4 ±5.0 69.5 ± 6.1 10.8 ± 3.3 40.8 ± 7.1 46.8 ± 5.8 70.3 ± 8.4

Table 2: Success rate (% of 100 episodes), reaching a final pose error of less than ϵtask, averaged
over five randomly seeded training runs for RL methods (DEXMOTS, PGDM, and PPO), and five
seeded runs of MPC. The MPC formulation uses the predictive sampling method with tracking
cost gradients to update planned actions, and the PGDM and PPO are mirrored from [8? ].

Task Setup – We introduce three differentiable simulation environments for dexterous
manipulation using object-centric pose-wrench trajectories: (1) planar object rotation
(Screw), where an applied torque to rotate an object must be controlled, and the object
joint friction is unknown and randomized per episode, (2) object reposing, where applied
forces repose an object to a desired position and orientation, and (3) object articulation,
where the fingers of a dexterous hand must form a stable grasp to operate an object’s
articulated revolute joint to a desired state.

In the planar object rotation task, the object trajectories τo characterize the required
torque to rotate the joint to its desired angle θ. In the reposing task, the cube rotate task
from [3] is used and the policy is conditioned on net torques applied to the object to
reach a desired orientation pose. The last task (constituting experiment 4), evaluates our
method on a realistic task of grasping and articulating objects from the Partnet Mobility
benchmark [27].
Metrics & Baselines – For evaluation, we determine if a learned dexterous policy is able
to solve the above tasks with our method and a set of baselines, shown in Table 2, where
we record the following metrics: a) the final task success rate, b) the time taken to solve
the task.

For the baseline methods, we compare a fast parallelized implementation of Prox-
imal Policy Optimization (PPO) [23, 30] (which does not feature any goal-trajectory
conditioning), Pre-Grasp informed Dexterous Manipulation (PGDM) [8] (which extends
PPO with pose-trajectory conditioning along with grasp initialization), and trajectory
optimization MPC baseline [17] which directly updates the time-indexed control param-
eters with cost gradients from the simulator. Note that for the PGDM baseline, we use



DexMOTS : Dexterous Manipulation with Differentiable Simulation 11

Fig. 4: Visualizing the object-centric loss landscape (negative reward) for rotating the prism from
an initial contact state (left), with (center) and without (right) the desired pose-wrench goal. By
differentiating a single time-step reward (minimizing the distance to the target pose-wrench) with
respect to the robot joint positions, yields a smoother landscape for optimization.

the same pre-sampled grasp pose as our method without running the additional CEM
optimization step as in the original paper [8], as our method does . Note that MPC is
included only as a lower-bound on the success rate for the harder tasks, since it requires
more memory to optimize higher-DoF, long-horizon tasks.
DEXMOTS Ablations – Our ablations highlight two main ideas in our approach: a) the
use of a pose-wrench object-centric task-conditioning, and b) the variable stiffness action
space for controlling the hand. In DEXMOTS (Goal pose), the policy is only conditioned
on the final goal pose of the object, while the default. In the goal pose-trajectory, it
is conditioned on the all object goal poses ≤ H steps from the beginning of the short
horizon, where H is the horizon length used in Eq. 8. Finally, in goal wrench, the policy
is conditioned on the desired pose and wrench of the object H time-steps in the future,
capturing the net wrench and pose to apply at that step.
Experiment 1: (Learning in differentiable simulation) – First, we determine how
learning a policy using gradients through the simulator affects the sample efficiency
of learning and success rate. As shown in Figure 3(c), DEXMOTS yields better per-
formance both in fewer simulation steps, as shown by the object planar rotation tasks.
To compare across simulators to highlight that our simulator does not produce any
disadvantages to non first-order gradient-based methods, we ran the Repose Cube task
in IsaacGymEnvs [24], and found that PPO, SAC, and PGDM performs within error
margins on the repose task. One advantage of our method across the different tasks in
Table 2 is that it requires minimal hyperparameter tuning per-task. The aggregate reward
coefficients in Eq. 3 were consistent across all of the tasks.
Experiment 2: (Action Space Ablation) – Next, we compare three different controllers:
variable impedance, position, and torque control, in the pedagogical Screw task to show
the advantages of using variable impedance control. As shown in Fig. 3b, policies trained
using the variable impedance (VI) action space consistently converged to the lowest
final goal-pose error across all 3 baseline algorithms. Notably, in the Screw benchmark,
PGDM in the joint position action space achieves comparable performance to the VI
action space, only being out-performed by DEXMOTS policy trained with VI actions.
However, in the rigid object Repose Cube task, PGDM does not outperform even PPO
due to its additional complexity in the reward function and unnecessary pose trajectory
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conditioning. As the task complexity grows for the operable articulated objects tasks,
we find the model-free baselines, with the exception of PGDM, do not perform well at
the tasks, with Table 2 showing the best policies being from either DEXMOTS (using
variable impedance) or DEXMOTS (goal-pose).

Experiment 3 (Goal Space Ablations): – Next, we analyze how different choices of task
specifications affect final task success. Table 2 shows the performance DEXMOTS with
and without (goal-pose) wrench trajectories. The final success metric for the DexMOTS
with goal-wrench trajectories is higher than goal-pose only on the Spray Bottle, Scissors,
and Repose Cube tasks and Stapler tasks, and is close to optimal for the Screw task.
We hypothesize this is a result of the smoother objective landscape (visualized for 1
step horizons in Fig. 4) and contributes to an easier-to-optimize objective for first-order
gradient methods.

Experiment 4 (Realistic Operable-object Tasks): – We evaluate DEXMOTS on a realistic
task where a four-fingered Allegro hand articulates operable objects from the SAPIEN
articulated object set [27]. Herein, the challenge is in applying wrenches to the object
using the Allegro hand asset, which is distinct from the hand used in the original TCDM
benchmark tasks [8]. Using our differentiable simulator, we acquire an object-centric
wrench trajectory generating the desired motion of the object in the simulator, without
needing to retarget joint positions to our robot hand. Then, we condition the agent on
the goals generated from the resulting trajectory, and compare our method with the PPO
and PGDM baselines. As shown in Table 2, DEXMOTS outperforms these baselines in
both the overall task success metric (L2 error from the final goal pose below ϵtask) and
required number of samples needed to converge (Fig. 3(c)) relative to the model-free
counter-parts. Notably, first-order methods (MPC) are unsuccessful for all of the tasks,
mainly due to the high-dimensional action and state spaces.

8 Conclusion and Future Work

In this work, we present our method, DEXMOTS, as an approach to learn policies
for object-centric tasks that require contact-rich dexterous manipulation. Specifically, we
consider a class of tasks where the state of articulating objects must be controlled, while
also exhibiting varying degrees of stiffness during a trajectory. We apply DEXMOTS
on a new benchmark of tool-use tasks, WARPMANIP, involving interaction with a
stiff revolute joint (like a screw-top lid or door knob) and a dexterous grasp with a
stapler, spray bottle, and scissors, and show that our method empirically outperforms
model-based and model-free baselines. One potential extension of our work would be to
incorporate differentiable grasping metrics, such as those explored in [32], to find realistic
pre-grasps to initialize training from. Following the example of [16], another future step
would be closing the sim-to-real gap by using our differentiable simulation environment
to learn the real world physics parameters through data collection, eventually allowing
the policy to also run on a real robot at test time. Lastly, another promising future
direction is to evaluate the utility of object-centric task spaces for multi-task learning
across objects with similar shapes and varying stiffnesses, such as different types of
bottles, as a way to extend DEXMOTS to generalize to object classes.
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